
Dr.M.Sivasankari earned her Ph.D degree in Computer Science from MS

University, Tirunelveli. She was a meritorious student both in academics and non

academics during her college days and she won a number of prizes and medals in

competitions conducted inside and outside of the college.

On top of that she is a Hat-trick World Record Holder with 40 different awards. She completed

her M.Phil (Computer Science) at St.Xavier's College, Palayamkottai, Tirunelveli and M.Sc

(Computer Science) & B.Sc (Computer Science) at G.Venkataswamy Naidu College, Kovilpatti.

She is currently working as an Assistant Professor of Computer Applications at Don Bosco

College of Arts and Science, Keela Eral. She has been actively playing a vital role in organizing

State, National, International level Competitions for the college. She has been honored and

felicitated in many occasions. She is being invited as a Resource Person for many programs

related to her discipline. She is an orator. She has published a number of technical papers at

National & International Conferences.

ISBN

No.

T
A

K
E

C

E

A
S

Y

-

D
r.

 M
.

S
IV

A
S

A
N

K
A

R
I

Dr. M. SIVASANKARI

A TEXT BOOK OF

TAKE C EASY

B.E. / B.Tech. STUDENTS

As Per Anna University Syllabus

(Computer Science and Engineering) - Regulation – 2017

B.Sc(CS) / B.Sc(IT) / BCA

Manonmaniam Sundaranar University Syllabus

Dr. M. SIVASANKARI

Assistant Professor, Department of Computer Applications

Don Bosco College of Arts and Science,

Keela Eral.

To the Author

All rights reserved to the publisher. No part of this book shall be

reproduced in any form photocopy or otherwise, without the written permission of

the publisher.

First Edition : November 2020

ISBN No. :

Price : Rs.

Publishers

Dr. M. Sivasankari

Assistant Professor, Department of Computer Applications

Don Bosco College of Arts and Science,

Keela Eral.

Contact for Copies:

Printed By :

M/s. Vinayaga Traders, 330-A, PKSA Arumugam Road,

Sivakasi- 626 189, Cell : 9486357318

Programming in C

ABOUT THE AUTHOR

Dr.M.Sivasankari earned her Ph.D degree in Computer Science

from MS University, Tirunelveli. She was a meritorious student both in

academics and non academics during her college days and she won a

number of prizes and medals in competitions conducted inside and outside

of the college. On top of that she is a Hat-trick World Record Holder with

40 different awards. She completed her M.Phil(Computer Science) at

St.Xavier’s College, Palayamkottai, Tirunelveli and M.Sc (Computer

Science) & B.Sc (Computer Science) at G.Venkataswamy Naidu College,

Kovilpatti. She is currently working as an Assistant Professor of Computer

Applications at Don Bosco College of Arts and Science, Keela Eral. She

has been actively playing a vital role in organizing State, National,

International level programmes for the college. She has been honored and

felicitated in many occasions. She is being invited as a Resource Person for

many programs related to her discipline. She’s an orator. She has published

a number of technical papers at National & International Conferences..

Dr.M.Sivasankari

PREFACE

This book is intended for beginners, intermediate level and for

all those who want to learn or expand their knowledge in C Program.

A systematic approach has been followed from the beginning to the

end. Most of the concepts of C language are explained in detail with

practical applications. Solved programs have also been provided to

help the learners to master the programming language.

A simple approach is used to understand the various concepts

of C language. Each Program is thoroughly explained and output is

also shown. Each and every program given in the book is perfectly

working.

These exercises are meant to test your skills & understanding

for solving the problems. If you study this book in a right spirit, you

will become an expert in C Programming. Best of Luck!

Utmost care has been taken to write the book in order to make

it free of errors. However, if you come across any error, you can feel

free to contact me. Your suggestions & feedback may kindly be sent

to the following maid id - mvsivasankari@gmail.com.

 Dr. M. SIVASANKARI

mailto:mvsivasankari@gmail.com

ACKNOWLEDGEMENT

I would like to thank all those who have encouraged me to

write the book.

I express my deep sense of gratitude to my professor

Dr. P. Velmani, Assistant Professor of Computer Science for her

thorough review of every topic discussed in the book. It was of great

help in improving this book.

I dedicate this book to my family and I wholeheartedly thank

them for their patience & support extended to me all the times

FOREWORD

Dr. P. Velmani,
Assistant Professor of Computer Science,

The M.D.T.Hindu College, Tirunelveli.

way2itcareerseekers.blogspot.com

The author of this study material Dr.M.Sivasankari, has the

qualities of high flying such as an orator, artists, organizer. I am very

happy to write the foreword of the study material "Take C easy"

prepared by her.

C is an ancient and still most popular programming language

in industry. Learning a programming language is very easy once you

know the basics of that particular language.

The material is prepared in an easy to understand manner. She

has explained all basic concepts of C programming in a simple

language with syntax, semantics, flow charts and sample programs.

Students can make it as a source for self-learning study material. This

is suitable for undergraduate students those who start studying on C

programming.

Since C is an ever wanted programming language and comes

in many versions, I wish the author to continue this work with refined

and possibly more example programs.

Don't See the C as Sea. Dive to explore to catch your dream.

(Dr. P. Velmani)

CONTENTS

Unit No. Topics Page No.

Chapter – 1 Introduction 1 – 2

Chapter – 2 Constants, Variables and Data Types 3 – 13

Chapter – 3 Operators 14 – 22

Chapter – 4 Managing Input and Output Operations 23 – 26

Chapter – 5 Decision Making and Branching 27 – 38

Chapter - 6 Decision Making and Looping 39 - 48

Chapter – 7 Arrays 49 – 54

Chapter – 8 Character Arrays and Strings 55 – 58

Chapter – 9 Pointers 59 – 66

Chapter - 10 Function 67 - 77

Chapter - 11 Structure 78 – 86

Chapter - 12 Files 87 - 90

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

1

CHAPTER 01

INTRODUCTION

 History of C

 C is a popular general-purpose programming language. C language

has been designed and developed by DENNIS RITCHIE at Bell

Laboratories in 1972.

 C was evolved from ALGOL, BCPL and B languages since it was

developed along with the UNIX Operating System.

 It‟s one of the most popular computer languages today because it is

a structured, high level, machine independent language.

 In 1983, American National Standards Institute (ANSI) appointed

a technical committee to define a standard for C.

 Structure of a C Program

Include header file section

Global Declaration Section

/* comments */

main() //Function name

{

* comments*/

Declaration Part

Executable Part

}

User- defined functions

{

Function 1

Function 2

-

-

-

Function n
}

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

2

 Executing the Program

The following steps are essential in executing a program in „C‟.

a) Creation of Program: Programs should be written in C editor. The

default extension is C.

b) Compilation of a program:the source program should be translated

into object programs which is suitable for execution by the

computer.if there is no error compilation proceeds and translated

program is stored in another file with the same file name with

extension “.obj”.

c) Linking: Linking is also an essential Process. It puts all other

program files and functions together that are required by the

program.

d) Executing the program: After the compilation the executable object

code will be loaded in the computer‟s main memory and the

program is executed.

For example: if the programmer is using pow() function, then the object

code of this function should be brought from math.h library of the system

and linked to the main() program.

- - - -

3

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

CHAPTER 02

CONSTANTS, VARIABLES AND DATA TYPES

 Character Set

The characters that can be used to form words, numbers and

expressions depend upon the computer on which the program is run. The

characters in C are grouped into the following categories:

 Letters

 Digits

 Special Characters

 White Spaces

Letters

Uppercase A…Z

Lowercase a…z

Digits

0…9

Special Characters

, comma

. period

; Semicolon

: Colon

? Question mark

„ Apostrophe

“ Quotation mark

! Exclamation Mark

| Vertical Bar

/ Slash

\ Backslash

~ Tilde

_ Underscore

$ Dollar Sign

% Percent Sign

White Spaces

Blank Space

Horizontal Tab

Carriage Return

New Line
Form Feed

Special Characters

&Ampersand

^ Caret

*Asterisk

- Minus sign

+ Plus sign

<Opening angle bracket or less

than sign

>Closing angle bracket or

greater than sign

(Left parenthesis

) Right Parenthesis

[Left Bracket

] Right Bracket

{ Left Brace

} Right Brace

Number sign or Hash

4

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

 TOKENS

In a passage of text, individual words and punctuation marks are

called tokens. Similarly, in a C program the smallest individual units are

known as C tokens

C has six types of tokens

 Keywords

 Constants

 Identifiers

 Strings

 Operators

 Special Symbols

 Keywords

Keywords serve as basic building blocks for program statements.

All keywords must be written in lowercase.

ANSI C Keywords

auto

break

case

char

const

continue

default

do

double

else

enum

extern

float

for

goto
if

int

long

register

return

short

signed

sizeof

static

struct

switch

typedef

union

unsigned

void

volatile

while

 Identifiers

Identifiers refer to the names of variables, function and arrays.

These are user-defined names and consist of a sequence of letters and

digits, with a letter as a first character.

Both uppercase and lowercase letters are permitted. The underscore

character is also permitted in identifiers.

Rules for Identifiers

1. First character must be an alphabet (or underscore)

2. Must consist of onlyletters, digits or underscore

3. Only first 31 characters are significant

4. Cannot use a keyword

5. Must not contain white space

5

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

 Constants

 Constants refer to fixed values that the program may not alter

during its execution. These fixed values are also called literals.

 Constants can be of any of the basic data types like an integer

constant, a floating constant, a character constant, or a string

literal. There are enumeration constants as well.

 Constants are treated just like regular variables except that their

values cannot be modified after their definition.

 Integer Constants

An integer constant refers to a sequence of digits. An integer literal

can be a decimal, octal, or hexadecimal constant. A prefix specifies the

base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for

decimal.

An integer literal can also have a suffix that is a combination of U

and L, for unsigned and long, respectively. The suffix can be uppercase or

lowercase and can be in any order.

Here are some examples of integer literals −

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of integer literals −

85 /* decimal */

0213 /* octal */

0x4b /* hexadecimal */

30 /* int */

30u /* unsigned int */

30l /* long */

30ul /* unsigned long */

6

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

 Floating-point Constants

A floating-point literal has an integer part, a decimal point, a

fractional part, and an exponent part. You can represent floating point

literals either in decimal form or exponential form.

While representing decimal form, you must include the decimal

point, the exponent, or both; and while representing exponential form, you

must include the integer part, the fractional part, or both. The signed

exponent is introduced by e or E.

Here are some examples of floating-point literals −

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.e55 /* Illegal: missing integer or fraction */

 Character Constants

 Character constants are enclosed in single quotes, e.g., 'x' can be

stored in a simple variable of char type.

 A character literal can be a plain character (e.g., 'x'), an escape

sequence (e.g., '\t'), or a universal character (e.g., '\u02C0').

 Backslash Character Constants

The backslash character constants that are used in output functions.

Constant Meaning

„\a‟

„\b‟

„\f‟

„\n‟

„\r‟

„\t‟

„\v‟

Audible alert(bell)

Backspace

Form feed

New line

Carriage return

Horizontal tab

Vertical tab

7

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

#include <stdio.h>

void main() {

printf("Hello\tWorld\n\n");

return 0;

}

Constant Meaning

„\‟‟

„\”‟

„\?‟

„\\‟

„\0‟

Single quote

Double quote

Question mark

Backslash

Null

Example

When the above code is compiled and executed, it produces the following

result −

Output:

Hello World

 String Constants

String literals or constants are enclosed in double quotes "". A string

contains characters that are similar to character literals: plain characters,

escape sequences, and universal characters.

We can break a long line into multiple lines using string literals and

separating them using white spaces.

Here are some examples of string literals. All the three forms are identical

strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

8

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

 Variable Definition in C

A variable is a data name used for storing a data value. Its value may be

changed during the program execution. The value of the variable keeps on

changing during the execution of a program.

Examples

Average

height

Sum

 Rules for Defining Variables

 They must begin with a character without spaces but underscore is

permitted.

 The length of the variable varies from compiler to compiler.

Generally, most of the compilers support 8 characters excluding

extension. However, the ANSI standard recognizes the maximum

length of a variable up to 31characters.

 The variable should not be a C keyword.

 The variable names may be a combination of uppercase and

lowercase characters. For example,suM and sum are not the same.

 The variable name should not start with a digit.

 Declaring Variables

The declaration of variables should be done in the declaration part of the

program. The variables must be declared before they are used in the

program. Declaration provides two things

1. Compiler obtains the variable name

2. It tells to the computer data type of the variable being declared and

helps in allocating the memory.

9

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Syntax

Data-type variable name

Example

int age;

char m;

float s;

double k;

int a,b,c;

The int, char, float, double are keywords to represent data types.

 Initializing/Assigning the variables

Variables declared can be assigned or initialized using the assignment

operator „=‟. The declaration and initialization can also be done in the same

line.

Syntax

variable_name = constant;

or

data_type variable _name = constant;

Example

X=2;

int x=2;

 Data Types

Data types in c refer to an extensive system used for declaring

variables or functions of different types. The type of a variable determines

how much space it occupies in storage and how the bit pattern stored is

interpreted.

The types in C can be classified as follows −

Sr.No. Types & Description

1

Basic Types

They are arithmetic types and are further classified into: (a)

integer types and (b) floating-point types.

10

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

#include <stdio.h>

#include <stdlib.h>

Sr.No. Types & Description

2

Enumerated types

They are again arithmetic types and they are used to define

variables that can only assign certain discrete integer values

throughout the program.

3
The type void
The type specifier void indicates that no value is available.

4
Derived types

They include (a) Pointer types, (b) Array types, (c) Structure

types, (d) Union types and (e) Function types.

The array types and structure types are referred collectively as the

aggregate types. The type of a function specifies the type of the function's

return value. We will see the basic types in the following section, where as

other types will be covered in the upcoming chapters.

 Integer Types

The following table provides the details of standard integer types

with their storage sizes and value ranges −

Type Storage Size Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to
2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 8 bytes -9223372036854775808to

9223372036854775807
unsigned long 8 bytes 0 to 18446744073709551615

To get the exact size of a type or a variable on a particular platform,

you can use the sizeof operator. The expressions sizeof(type) yields the

storage size of the object or type in bytes. Given below is an example to get

the size of various type on a machine using different constant defined in

limits.h header file −

11

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

#include <limits.h>

#include <float.h>

int main(int argc, char** argv) {

printf("CHAR_BIT : %d\n", CHAR_BIT);

printf("CHAR_MAX : %d\n", CHAR_MAX);

printf("CHAR_MIN : %d\n", CHAR_MIN);

printf("INT_MAX : %d\n", INT_MAX);

printf("INT_MIN : %d\n", INT_MIN);

printf("LONG_MAX : %ld\n", (long) LONG_MAX);

printf("LONG_MIN : %ld\n", (long) LONG_MIN);

printf("SCHAR_MAX : %d\n", SCHAR_MAX);

printf("SCHAR_MIN : %d\n", SCHAR_MIN);

printf("SHRT_MAX : %d\n", SHRT_MAX);

printf("SHRT_MIN : %d\n", SHRT_MIN);

printf("UCHAR_MAX : %d\n", UCHAR_MAX);

printf("UINT_MAX : %u\n", (unsigned int) UINT_MAX);

printf("ULONG_MAX : %lu\n", (unsigned long) ULONG_MAX);

printf("USHRT_MAX : %d\n", (unsigned short) USHRT_MAX);

return 0;

}

When you compile and execute the above program, it produces the

following result on Linux −

CHAR_BIT : 8

CHAR_MAX : 127

CHAR_MIN : -128

INT_MAX : 2147483647

INT_MIN : -2147483648

LONG_MAX : 9223372036854775807

LONG_MIN : -9223372036854775808

SCHAR_MAX : 127

SCHAR_MIN : -128

SHRT_MAX : 32767

SHRT_MIN : -32768

UCHAR_MAX : 255

12

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <float.h>

int main(int argc, char** argv) {

printf("Storage size for float : %d \n", sizeof(float));

printf("FLT_MAX : %g\n", (float) FLT_MAX);

printf("FLT_MIN : %g\n", (float) FLT_MIN);

printf("-FLT_MAX : %g\n", (float) -FLT_MAX);

printf("-FLT_MIN : %g\n", (float) -FLT_MIN);

printf("DBL_MAX : %g\n", (double) DBL_MAX);

printf("DBL_MIN : %g\n", (double) DBL_MIN);

printf("-DBL_MAX : %g\n", (double) -DBL_MAX);

printf("Precision value: %d\n", FLT_DIG);

return 0;

}

UINT_MAX : 4294967295

ULONG_MAX : 18446744073709551615

USHRT_MAX : 65535

 Floating-Point Types

The following table provides the details of standard floating-point

types with storage sizes and value ranges and their precision –

Type Storage size Value range Precision

Float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

Double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The header file float.h defines macros that allow you to use these values

and other details about the binary representation of real numbers in your

programs. The following example prints the storage space taken by a float

type and its range values −

When you compile and execute the above program, it produces the

following result on Linux −

Storage size for float: 4

FLT_MAX : 3.40282e+38

FLT_MIN : 1.17549e-38

13

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

-FLT_MAX : -3.40282e+38

-FLT_MIN : -1.17549e-38

DBL_MAX : 1.79769e+308

DBL_MIN : 2.22507e-308

-DBL_MAX : -1.79769e+308

Precision value: 6

 Void Type

The void type specifies that no value is available. It is used in three kinds of

situations −

Sr.No. Types & Description

1 Function returns as void

There are various functions in C which do not return any value or

you can say they return void. A function with no return value has

the return type as void. For example, void exit (int status);

2 Function arguments as void

There are various functions in C which do not accept any

parameter. A function with no parameter can accept a void. For

example, int rand(void);

3 Pointers to void

A pointer of type void * represents the address of an object, but

not its type. For example, a memory allocation function void

*malloc(size_t size); returns a pointer to void which can be

casted to any data type.

 Character type

A single character can be defined as a character(char) type data.

Characters are usually stored in 8 bits (one byte) of internal storage. The

quantifier signed or unsigned may be explicitly applied to char. While

unsigned chars have values between 0 and 25, signed chars have values

from -128 to 127.

- - - -

14

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

CHAPTER 03

OPERATORS

 Definition

An operator is a symbol that tells the compiler to perform specific

mathematical or logical functions. C language is rich in built-in operators

and provides the following types of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Increment and Decrement Operators

 Conditional Operators

 Special Operators

 Arithmetic Operators

 C provides all the basic arithmetic operators. These can operate on

any built-in data type allowed in c.

 The following table shows all the arithmetic operators supported by

the C language. Assume variable A holds 10 and variable B holds

20 then Show Examples

Operator Description Example

+ Unary Plus or Adds two operands. A + B = 30

− Unary minus or Subtracts second operand
from the first.

A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

% Modulus Operator and remainder of after

an integer division.

B % A = 0

Integer Arithmetic

When both the operands in a single arithmetic expression such as

a+b are integers, the expression is called integer arithmetic. Integer

arithmetic always yields an integer value.

https://www.tutorialspoint.com/cprogramming/c_arithmetic_operators.htm

15

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Example

If a and b are integers, then for a=14 and b=4 we have the following

results.

a-b=10, a+b=18, a*b=56, a/b=3(decimal part truncated), a%b =

2(remainder of division).

Real Arithmetic

An arithmetic operation involving only real operands is called real

arithmetic. A real operand may assume values either in decimal or

exponential notation.

Example

X=6.0/7.0= 0.857143

Y= -2.0/3.0 = -0.666667

The operator % cannot be used with real operands.

Mixed - mode Arithmetic

When one of the operands is real and the other is integer, the

expression is called a mixed- mode arithmetic expression.

Example

15/10.0 = 1.5

Whereas 15/10 =1

 Relational Operators

We often compare two quantities and depending on their relation,

take certain decisions.

Syntax

ae-1 relational operator ae-2

The following table shows all the relational operators supported by C.

Assume variable A holds 10 and variable B holds 20 then −

16

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Show Examples

Operator Meaning Description Example

== is equal to Checks if the values of two operands

are equal or not. If yes, then the

condition becomes true.

(A == B)

is not

true.

!= is not equal

to

Checks if the values of two operands

are equal or not. If the values are not

equal, then the condition becomes

true.

(A != B)

is true.

> is greater

than

Checks if the value of left operand is

greater than the value of right

operand. If yes, then the condition

becomes true.

(A > B)

is not

true.

< is less than Checks if the value of left operand is

less than the value of right operand.

If yes, then the condition becomes
true.

(A < B)

is true.

>= is greater

than or

equal to

Checks if the value of left operand is

greater than or equal to the value of

right operand. If yes, then the

condition becomes true.

(A >= B)

is not

true.

<= is less than

or equal to

Checks if the value of left operand is

less than or equal to the value of right

operand. If yes, then the condition

becomes true.

(A <= B)

is true.

 Logical Operators

The logical operators && and || are used when we want to test more

than one condition and make decisions.

Example

a>b && x==10

An expression of this kind, which combines two or more relational

expressions, is termed as a logical expression or a compound relational

expression.

Following table shows all the logical operators supported by C

language. Assume variable A holds 1 and variable B holds 0, then −

https://www.tutorialspoint.com/cprogramming/c_relational_operators.htm

17

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Show Examples

Operator Meaning Description Example

&& Logical

AND

Called Logical AND operator. If both

the operands are non-zero, then the

condition becomes true.

(A &&

B) is
false.

|| Logical

OR

Called Logical OR Operator. If any of

the two operands is non-zero, then the

condition becomes true.

(A || B)

is true.

! Logical

NOT

Called Logical NOT Operator. It is

used to reverse the logical state of its

operand. If a condition is true, then

Logical NOT operator will make it

false.

!(A &&

B) is

true.

 Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operation.

These operators are used for testing the bits, or shifting them right or left.

Bitwise operators may not be applied to float or double.

The following table lists the bitwise operators supported by C.

Assume variable 'A' holds 60 and variable 'B' holds 13, then −

Show Examples

Operator Meaning Description Example

& Bitwise

AND

Binary AND Operator copies

a bit to the result if it exists in

both operands.

(A & B) = 12,

i.e., 0000 1100

| Bitwise OR Binary OR Operator copies a

bit if it exists in either

operand.

(A | B) = 61,

i.e., 0011 1101

^ Bitwise

exclusive

OR

Binary XOR Operator copies

the bit if it is set in one

operand but not both.

(A ^ B) = 49,

i.e., 0011 0001

~ Bitwise

tilde

Binary One's Complement

Operator is unary and has the
effect of 'flipping' bits.

(~A) = ~(60),

i.e,. -0111101

<< Shift left Binary Left Shift Operator.

The left operands value is

moved left by the number of

bits specified by the right
operand.

A << 2 = 240

i.e., 1111 0000

>> Shift right Binary Right Shift Operator.
The left operands value is

A >> 2 = 15
i.e., 0000 1111

https://www.tutorialspoint.com/cprogramming/c_logical_operators.htm
https://www.tutorialspoint.com/cprogramming/c_bitwise_operators.htm

18

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Operator Meaning Description Example

 moved right by the number of

bits specified by the right
operand.

 Assignment Operators

 Assignment operators are used to assign the result of an expression

to a variable.

 C has a set of short hand assignment operators of the form

Syntax

Three advantages

V op=exp;

is equivalent to v=v op (exp);

 What appears on the left-hand side need not be repeated and

therefore it becomes easier to write.

 The statement is more concise and easier to read

 The statement is more efficient.

The following table lists the assignment operators supported by the C

language −

Show Examples

Operator Description Example

= Simple assignment operator. Assigns

values from right side operands to left

side operand

C = A + B will assign

the value of A + B to

C

+= Add AND assignment operator. It

adds the right operand to the left

operand and assign the result to the

left operand.

C += A is equivalent

to C = C + A

-= Subtract AND assignment operator. It

subtracts the right operand from the

left operand and assigns the result to
the left operand.

C -= A is equivalent

to C = C - A

*= Multiply AND assignment operator. It

multiplies the right operand with the

left operand and assigns the result to

the left operand.

C *= A is equivalent

to C = C * A

/= Divide AND assignment operator. It

divides the left operand with the right

C /= A is equivalent

to C = C / A

https://www.tutorialspoint.com/cprogramming/c_assignment_operators.htm

19

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Operator Description Example

 operand and assigns the result to the

left operand.

%= Modulus AND assignment operator. It

takes modulus using two operands and

assigns the result to the left operand.

C %= A is equivalent

to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C
= C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C
= C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C
= C & 2

^= Bitwise exclusive OR and assignment

operator.

C ^= 2 is same as C =

C ^ 2

|= Bitwise inclusive OR and assignment
operator.

C |= 2 is same as C =
C | 2

 Increment and Decrement Operators

C allows two very useful operators not generally found in other language.

 Increment operator ++

 Decrement operator - -

The operator ++ adds 1 to the operand, while -- subtracts 1. Both are unary

operators and takes the following form

++m; or m++;

- -m; or m- -;

++ m is equivalent to m=m+1;

m++ is equivalent to m=m+1;

Rules

 Increment and Decrement operators are unary operators and they

require variable as their operands.

 When postfix ++ (or --) is used with a variable in an expression, the

expression is evaluated first using the original value of the variable

and then the variable is incremented (or decremented) by one.

20

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

 When prefix ++ (or --) is used in an expression, the variable is

incremented (or decremented)first and then the expression is

evaluated using the new value of the variable.

 The precedence and associatively of ++ and -- operators are the

same as those of unary + and unary -.

Example

m=5; y=++m;

In this case, the value of y and m would be 6. A prefix operator first

adds 1 to the operand then the result is assigned to the variable on left.

Suppose, if we rewrite the above statements as

m=5; y=m++;

Then the value of y would be 5 and m would be 6. A postfix

operator first assigns the value to the variable on left then increments the

operator.

 Conditional Operator

The ternary operator pair “? : ” is available in C to construct

conditional expressions of the form

Syntax

exp1? exp 2 : exp3

where exp1,exp2and exp3 are expressions

The operator ?works as follows : ep1 is evaluated first. If it is

nonzero(true), then the expressionexp2 is evaluated and becomes the value

of the expression. If exp1 is false, exp3 is evaluated and its value becomes

the value of the expression.

21

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Example

a=10;

b=15;

x=(a>b) ? a: b;

 Special Operators

C supports some special operators of interest such as comma

operator, sizeof operator, pointer operators(& and *) and member selection

operators(. and ->)

Show Examples

Operator Description Example

sizeof() Returns the size of a

variable.

sizeof(a), where a is integer,

will return 4.

& Returns the address of a
variable.

&a; returns the actual address
of the variable.

* Pointer to a variable. *a;

? : Conditional Expression. If Condition is true ? then value
X : otherwise value Y

 The Comma operator

The comma operator can be used to link the related expressions

together.

Example

Value = (x=10,y=5, x+y);

 Sizeof operator

The sizeof is a compile time operator and,when used with an

operand,it returns the number of bytes the operand occupies. The operand

may be a variable, a constant or a data type qualifier.

Examples

M= sizeof(sum);

https://www.tutorialspoint.com/cprogramming/c_sizeof_operator.htm

22

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

N=sizeof(long int);

K= sizeof(235L);

 Operators Precedence in C

Operator precedence determines the grouping of terms in an

expression and decides how an expression is evaluated. Certain operators

have higher precedence than others;

For example, the multiplication operator has a higher precedence

than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because

operator * has a higher precedence than +, so it first gets multiplied with

3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the

table, those with the lowest appear at the bottom. Within an expression,

higher precedence operators will be evaluated first.

Show Examples

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift <<>> Left to right

Relational <<= >>= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

- - - -

https://www.tutorialspoint.com/cprogramming/c_operators_precedence.htm

23

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

CHAPTER 04

MANAGING INPUT AND OUTPUT OPERATIONS

Reading, processing, and writing of data are the three essential

functions of a computer program. Most programs take some data as input

and display the processed data, often known as information or results.

 Reading a Character

getchar() function reads character type data from the standard

input. It reads one character at a time till the user presses the enter key.

Syntax

variable_name = getchar();

Example

char name;

name = getchar();

it will assign the character „H‟ to the variable name when we press the key

Hon the keyboard. Since getchar is a function, it requires a set of

parentheses.

 Writing a Character

putchar() function prints one character on the screen at a time

which is read by the standard input.

Syntax

putchar (variable_name);

where variable_name is a type char variable containing a character. This

statement displays the character contained in the variable name at the

terminal.

Example

Answer = „Y‟;

putchar (Answer);

24

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

It will display the character Y on the screen.

 Formatted Input

Formatted input refers to an input data that has been arranged in a

particular format.

 The scanf() Statement

The scanf() Statement reads all types of data values. It is used for

runtime assignment of variables. The scanf() Statement also requires

conversation symbol to identify the data to be read during execution of a

program.

Syntax

scanf(“control string” , arg1,arg2…argn);

Example

scanf(“%d %f%c”, &a,&b,&c);

The scanf() statement requires „&‟ operator called address operator.

The address operator prints the memory location of the variable. Here, in

the scanf() statement the role of „&‟ operator is to indicate the memory

location of the variable, so that the value read would be placed at that

location.

 Inputting integer numbers

The field specification for reading an integer number is:

%wsd

The percentage sign (%) indicates that a conversion specification follows.

w is an integer number that specifies the field width of the number to be read and

d, known as data type character, indicates that the number to be read is in integer

mode.

Example

scanf(“%2d %5d”, & num1, & num2);

25

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

 Inputting real numbers

scanf() reads real numbers using the simple specification %f for

both the notations, namely decimal point notation and exponential notation.

Example

Scanf(“ %f %f %f ” , &x,&y,&z);

With the input data

475.89 43.21 34.56

 Inputting Character Strings

A single character can be read from the terminal using the getchar

function. The same can be achieved using the scanf function also.

%ws or %wc

 Formatted Output

Formatted output refers to an output data.

 printf() statement

The printf()function prints all types of data values to the console. It

requires conversion symbol and variable names to print the data. The

conversion symbol and variable names should be same in number.

Syntax

printf(“control string” , arg1,arg2…argn);

Example

printf(“%d %f %c” , a,b,c);

 Outputting integer numbers

The format specification for printing an integer number is:

%wd

The percentage sign (%) indicates that a conversion specification follows.

w specifies the minimum field width for the output, and d, known as data type

character, indicates that the number to be printed is in integer mode.

26

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Example

printf(“%2d ”,9876);

 Output of the real numbers

The output of a real number may be displayed in decimal notation

using the following format specification.

%wpf

Example

printf(“ %f ” , number);

 Printing a Single Character

A single character can be displayed in a desired position using the

format.

%wc

The character will be displayed right-justified in the field of w columns.

 Printing of Strings

The format specification for outputting strings is similar to that of

real numbers. It is of the form.

%w.ps

The characters will be displayed right-justified in the field of w columns.

- - - -

27

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

CHAPTER 05

DECISION MAKING AND BRANCHING

 Introduction

Decision making structures require that the programmer specifies

one or more conditions to be evaluated or tested by the program, along with

a statement or statements to be executed if the condition is determined to be

true, and optionally, other statements to be executed if the condition is

determined to be false.

Show below is the general form of a typical decision-making

structure found in most of the programming languages −

C programming language assumes any non-zero and non-

null values as true, and if it is either zero or null, then it is assumed

as false value.

C programming language provides the following types of decision-

making statements.

28

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Sr.No. Statement & Description

1 if statement

An if statement consists of a boolean expression followed by one

or more statements.

2 if...else statement

An if statement can be followed by an optional else statement,

which executes when the Boolean expression is false.

3 nested if statements

You can use one if or else if statement inside another if or else

if statement(s).

4 switch statement

A switch statement allows a variable to be tested for equality

against a list of values.

5 nested switch statements

You can use one switch statement inside

another switch statement(s).

 if Statement

Definition

C uses the keyword if to execute a set of command line or one

command line when the logical condition is true. It has only one option.

Syntax

if(conditon)

{

/* statement(s) will execute if the condition is true */

}

Explanation

If the condition evaluates to true, then the block of code inside the

'if' statement will be executed. If the test condition evaluates to false, then

the first set of code after the end of the 'if' statement (after the closing curly

brace) will be executed.

https://www.tutorialspoint.com/cprogramming/if_statement_in_c.htm
https://www.tutorialspoint.com/cprogramming/if_else_statement_in_c.htm
https://www.tutorialspoint.com/cprogramming/nested_if_statements_in_c.htm
https://www.tutorialspoint.com/cprogramming/switch_statement_in_c.htm
https://www.tutorialspoint.com/cprogramming/nested_switch_statements_in_c.htm

29

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

#include <stdio.h>

void main () {

/* local variable definition */

int a = 10;

/* check the test condition using if statement */

if(a < 20) {

/* if condition is true then print the following */

printf("a is less than 20\n");

}

printf("value of a is : %d\n", a);

}

Flow Diagram

Example

When the above code is compiled and executed, it produces the following

result −

a is less than 20

value of a is : 10

30

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

 if…else Statement

The if…else statement takes care of true as well as false conditions.

It has two blocks. One block is for if and it is executed when the condition

is true. The other block is of else and it is executed when the condition is

false. The else statement cannot be used without if.

Syntax

if(condition)

{

/* statement(s) will execute if the condition is true */

}

else

{

/* statement(s) will execute if the condition is false */

}

If the condition evaluates to true, then the if block will be executed,

otherwise, the else block will be executed.

C programming language assumes any non-zero and non-

null values as true, and if it is either zero or null, then it is assumed

as false value.

Flow Diagram

31

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

}

print the

print the

/* check the condition */

if(a <20)

{
/* if condition is true then

following */

printf("a is less than 20\n");

}

else

{
/* if condition is false then

following */

printf("a is not less than 20\n");

}

printf("value of a is : %d\n", a);

#include<stdio.h>

void main (){

/* local variable definition */

int a =100;

Example

When the above code is compiled and executed, it produces the following

result −

a is not less than 20

value of a is : 100

 Nested if...else Statement

if any logical condition is true the compiler executes the block

followed by if condition otherwise it skips and executes else block. In if ..

else statement else block is executed by default after failure of condition.

This kind of nesting will be unlimited.

32

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

#include<stdio.h>

void main (){

/* local variable definition */

int a =100;

/* check the condition */

if(a ==10){
/* if condition is true then print the following

*/

printf("Value of a is 10\n");

}elseif(a ==20){

/* if else if condition is true */

printf("Value of a is 20\n");

}elseif(a ==30){

/* if else if condition is true */

printf("Value of a is 30\n");

Rules

 Nested if..else can be chained with one another

 If the condition is false control passes to else block where condition

is again checked with the if statement. This process continues if

there is no if statement in the last else block.

 If one of the if statements satisfies the condition, other nested

else…if will not be executed.

Syntax

if(condition 1) {

/* Executes when the condition1 is true */

} else if(condition 2) {

/* Executes when the condition 2 is true */

} else if(condition 3) {

/* Executes when the condition 3 is true */

} else {

/* executes when the none of the above condition is true */

}

Example

33

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

When the above code is compiled and executed, it produces the

following result −

None of the values is matching

Exact value of a is: 100

 The Else if ladder

A multipath decision is a chain of ifs in which the statement

associated with each else is an if.

Syntax

if(condition 1)

statement1;

else if(condition 2)

statement 2;

else if(condition 3)

statement 3;

else if(condition n)

statement n;

else

default – statement;

statement x;

#include<stdio.h>

void main (){

}else{

/* if none of the conditions is true */

printf("None of the values is matching\n");

}

printf("Exact value of a is: %d\n", a);

}

34

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

switch(expression) {

case constant-expression :

statement(s);

break; /* optional */

case constant-expression :

statement(s);

break; /* optional */

/* you can have any number of case statements */

default : /* Optional */

statement(s);

}

/* local variable definition */

int a =100;

/* check the condition */

if(a ==10){
/* if condition is true then print the following

*/

printf("Value of a is 10\n");

}elseif(a ==20){

/* if else if condition is true */

printf("Value of a is 20\n");

}elseif(a ==30){

/* if else if condition is true */

printf("Value of a is 30\n");

}else{

/* if none of the conditions is true */

printf("None of the values is matching\n");

}

printf("Exact value of a is: %d\n", a); return0;

}

When the above code is compiled and executed, it produces the

following result −

None of the values is matching

Exact value of a is: 100

 switch statement

The switch statement is a multi-way branch statement. The switch

statement evaluates expression and then looks for its value among the case

constants. if the value matches with case constant, this particular case

statement is executed. If not, default is executed.

Syntax

35

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

Rules

The following rules apply to a switch statement −

 The expression used in a switch statement must have an integral or

enumerated type, or be of a class type in which the class has a single

conversion function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each

case is followed by the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as

the variable in the switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the

statements following that case will execute until a break statement

is reached.

 When a break statement is reached, the switch terminates, and the

flow of control jumps to the next line following the switch

statement.

 Not every case needs to contain a break. If no break appears, the

flow of control will fall through to subsequent cases until a break is

reached.

 A switch statement can have an optional default case, which must

appear at the end of the switch. The default case can be used for

performing a task when none of the cases is true. No break is

needed in the default case.

36

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

#include <stdio.h>

void main () {

/* local variable definition */

char grade = 'B';

switch(grade) {

case 'A' :

printf("Excellent!\n");

break;

case 'B' :

case 'C' :

printf("Well done\n");

break;

case 'D' :

printf("You passed\n");

break;

Flow Diagram

Example

37

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

When the above code is compiled and executed, it produces the following

result −

Well done

Your grade is B

 The ? : Operator

We have covered conditional operator ? : in the previous chapter

which can be used to replace if...else statements. It has the following

general form –

Syntax

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and

placement of the colon.

The value of a ? expression is determined like this −

 Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes

the value of the entire ? expression.

 If Exp1 is false, then Exp3 is evaluated and its value becomes the

value of the expression.

 We may encounter situations, when a block of code needs to be

executed several numbers of times. In general, statements are

executed sequentially: The first statement in a function is executed

first, followed by the second, and so on.

 Programming languages provide various control structures that

case 'F' :

printf("Better try again\n");

break;

default :

printf("Invalid grade\n");

}

printf("Your grade is %c\n", grade);

return 0;

}

38

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

goto label;

label:

statement;

label:

statement;

goto label;

#include<stdio.h>

void main()

{

double x,y;

read:

scanf(“%f”,&x);

if(x<0) goto read;

printf(“%f”,x);

}

allow for more complicated execution paths.

 A loop statement allows us to execute a statement or group of

statements multiple times. Given below is the general form of a

loop statement in most of the programming languages −

 Go to Statement

The goto requires a label in order to identify the place where the

branch is to be made. A label is any valid variable name, and must be

followed by a colon. The label is placed immediately before the statement

where the control is to be transferred.

Syntax

Fig. 5.8 (a) Forward Jump Fig. 5.8 (b) Backward Jump

Example

- - - -

39

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

CHAPTER 06

DECISION MAKING AND LOOPING

 Introduction

C programming language provides the following types of loops to

handle looping requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the loop

body.

2 for loop

Executes a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

3 do...while loop

It is more like a while statement, except that it tests the condition

at the end of the loop body.

4 nested loops

You can use one or more loops inside any other while, for, or

do..while loop.

 while statement

A while loop in C programming repeatedly executes a target

statement as long as a given condition is true.

Syntax

The syntax of a while loop in C programming language is −

while(condition) {

statement(s);

}

Here, statement(s) may be a single statement or a block of

statements. The condition may be any expression, and true is any nonzero

value. The loop iterates while the condition is true.

When the condition becomes false, the program control passes to

the line immediately following the loop.

https://www.tutorialspoint.com/cprogramming/c_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_for_loop.htm
https://www.tutorialspoint.com/cprogramming/c_do_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_nested_loops.htm

40

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

#include <stdio.h>

void main () {

/* local variable definition */

int a = 10;

/* while loop execution */

while(a < 20) {

printf("value of a: %d\n", a);

a++;

}

}

Flow Diagram

Here, the key point to note is that a while loop might not execute at

all. When the condition is tested and the result is false, the loop body will

be skipped and the first statement after the while loop will be executed.

Example

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

41

When the above code is compiled and executed, it produces the following

result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

 for loop

A for loop is a repetition control structure that allows you to

efficiently write a loop that needs to execute a specific number of times.

Syntax

The syntax of a for loop in C programming language is −

for (init; condition; increment) {

statement(s);

}

Here is the flow of control in a 'for' loop −

 The init step is executed first, and only once. This step allows you

to declare and initialize any loop control variables. You are not

required to put a statement here, as long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is

executed. If it is false, the body of the loop does not execute and the

flow of control jumps to the next statement just after the 'for' loop.

 After the body of the 'for' loop executes, the flow of control jumps

back up to the increment statement. This statement allows you to

update any loop control variables. This statement can be left blank,

as long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes

and the process repeats itself (body of loop, then increment step,

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

42

#include <stdio.h>

void main () {

int a;

/* for loop execution */

for(a = 10; a < 20; a = a + 1){

printf("value of a: %d\n", a);

}

}

and then again condition). After the condition becomes false, the

'for' loop terminates.

Flow Diagram

Example

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

43

When the above code is compiled and executed, it produces the

following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

 do… while loop

Unlike for and while loops, which test the loop condition at the top

of the loop, the do...while loop in C programming checks its condition at

the bottom of the loop.

A do...while loop is similar to a while loop, except the fact that it is

guaranteed to execute at least one time.

Syntax

The syntax of a do...while loop in C programming language is −

do {

statement(s);

} while(condition);

Notice that the conditional expression appears at the end of the

loop, so the statement(s) in the loop executes once before the condition is

tested.

If the condition is true, the flow of control jumps back up to do, and

the statement(s) in the loop executes again. This process repeats until the

given condition becomes false.

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

44

#include <stdio.h>

void main () {

/* local variable definition */

int a = 10;

/* do loop execution */

do {

printf("value of a: %d\n", a);

a = a + 1;

}while(a < 20);

}

Flow Diagram

Example

When the above code is compiled and executed, it produces the following

result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

45

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

 Nested for loop

C programming allows to use one loop inside another loop. The

following section shows a few examples to illustrate the concept.

Syntax

for (init; condition; increment) {

for (init; condition; increment) {

statement(s);

}

statement(s);

}

The syntax for a nested while loop statement in C programming

language is as follows −

while(condition) {

while(condition) {

statement(s);

}

statement(s);

}

The syntax for a nested do...while loop statement in C programming

language is as follows −

do {

statement(s);

do {

statement(s);

}while(condition);

}while(condition);

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

46

#include <stdio.h>

void main () {

/* local variable definition */

int i, j;

for(i = 2; i<100; i++) {

for(j = 2; j <= (i/j); j++)

if(!(i%j)) break; // if factor found, not prime

if(j > (i/j)) printf("%d is prime\n", i);

}

}

A final note on loop nesting is that you can put any type of loop

inside any other type of loop. For example, a 'for' loop can be inside a

'while' loop or vice versa.

Example

The following program uses a nested for loop to find the prime numbers

from 2 to 100 −

When the above code is compiled and executed, it produces the following

result −

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

47

#include <stdio.h>

void main () {

for(; ;) {

printf("This loop will run forever.\n");

}

}

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 s prime

97 s prime

 Loop Control Statements

 Loop control statements change execution from its normal

sequence. When execution leaves a scope, all automatic objects that

were created in that scope are destroyed.

 C supports the following control statements.

Sr.No. Control Statement & Description

1 break statement

Terminates the loop or switch statement and transfers execution to

the statement immediately following the loop or switch.

2 continue statement

Causes the loop to skip the remainder of its body and immediately

retest its condition prior to reiterating.

3 goto statement
Transfers control to the labeled statement.

 The Infinite Loop

A loop becomes an infinite loop if a condition never becomes false.

The for loop is traditionally used for this purpose. Since none of the three

expressions that form the 'for' loop are required, you can make an endless

loop by leaving the conditional expression empty.

https://www.tutorialspoint.com/cprogramming/c_break_statement.htm
https://www.tutorialspoint.com/cprogramming/c_continue_statement.htm
https://www.tutorialspoint.com/cprogramming/c_goto_statement.htm

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

48

 When the conditional expression is absent, it is assumed to be true.

You may have an initialization and increment expression, but C

programmers more commonly use the for(;;) construct to signify an

infinite loop.

 NOTE − You can terminate an infinite loop by pressing Ctrl + C

keys.

- - - -

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

49

CHAPTER 07

ARRAYS

 Definition

An Array is a fixed-size sequenced collection of elements of the

same data type. An array is used to store a collection of data, but it is often

more useful to think of an array as a collection of variables of the same

type.

Instead of declaring individual variables, such as number0,

number1, ..., and number99, you declare one array variable such as

numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent

individual variables. A specific element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest

address corresponds to the first element and the highest address to the last

element.

 One – Dimensional Arrays

A list of items can be given one variable name using only one

subscript and such a variable is called a single – subscripted variable or a

one – dimensional array.

 Declaring Array

To declare an array in C, a programmer specifies the type of the

elements and the number of elements required by an array as follows −

Syntax

type arrayName [arraySize];

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

50

This is called a single-dimensional array. The arraySize must be an

integer constant greater than zero and type can be any valid C data type.

For example, to declare a 10-element array called balance of type

double, use this statement −

double balance[10];

Here balance is a variable array which is sufficient to hold up to 10

double numbers.

 Initializing Arrays

After an array is declared, its element must be initialized.

Otherwise, they will contain “garbage”. An array can be initialized at either

of the following stages.

 At compile time

 At run time

Compile Time initialization

We can initialize the elements of arrays in the same way as the

ordinary variables when they are declared.

Syntax

Type array_name[size]={ list of values };

Example

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the

number of elements that we declare for the array between square brackets [

].

If you omit the size of the array, an array just big enough to hold the

initialization is created. Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

51

You will create exactly the same array as you did in the previous

example. Following is an example to assign a single element of the array −

balance[4] = 50.0;

The above statement assigns the 5
th

 element in the array with a

value of 50.0. All arrays have 0 as the index of their first element which is

also called the base index and the last index of an array will be total size of

the array minus 1. Shown below is the pictorial representation of the array

we discussed above −

Run Time Initialization

An array can be explicitly initialized at run time. This approach is

usually applied for initializing large arrays.

Example

int x[3];

scanf(“%d %d%d”, &x[0], &x[1],&x[2]);

 Accessing Array Elements

An element is accessed by indexing the array name. This is done by

placing the index of the element within square brackets after the name of

the array.

For example −

double salary = balance[9];

The above statement will take the 10
th

 element from the array and

assign the value to salary variable.

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

52

#include <stdio.h>

void main () {

int n[10]; /* n is an array of 10 integers */

int i,j;

/* initialize elements of array n to 0 */

for (i = 0; i < 10; i++) {

n[i] = i + 100; /* set element at location i to i + 100 */

}

/* output each array element's value */

for (j = 0; j < 10; j++) {

printf("Element[%d] = %d\n", j, n[j]);

}

}

The following example Shows how to use all the three above

mentioned concepts viz. declaration, assignment, and accessing arrays −

When the above code is compiled and executed, it produces the following

result −

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

 Two – Dimensional Array

Two – dimensional array can be thought as a rectangular display of

elements with rows and columns. The two – dimensional array is a

collection of a number of one - dimensional array can be thought of as a

single – dimensional array.

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

53

Syntax

Example

int [3][3];

Type array_name[row_size][column_size];

 Initializing two – dimensional arrays

Two-dimensional arrays may be initialized by following their

declaration with a list of initial values enclosed in braces.

Syntax

Type array_name[row_size][column_size]={list of values};

Example

Write a program to display the elements of two –dimensional array.

#include<stdio.h>

#include<conio.h>

void main()

{

int i,j;

int a[3][3]={{1,2,3},{4,5,6},{7,8,9}};

clrscr();

printf(“Elements of an Array.\n\n”);

for(i=0;i3;i++)

{

for(j=0;j<3;j++)

printf(“%5d”,a[i][j]);

printf(“\n”);

}

}

Output

Elements of an array

1 2 3

4 5 6

7 8 9

 Three or Multidimensional Arrays

C allows arrays of three or more dimensions. The compiler

determines the restriction on it.

Syntax

Type array _name[s1][s2][s3]…s[n];

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

54

Example

Write a program to explain the working of three dimensional array.

#include<stdio.h>

#include<conio.h>

void main()

{

int array_3d[3][3][3];

int a,b,c;

clrscr();

for(a=0;a<3;a++)

for(b=0;b<3;b++)

for(c=0;c<3;c++)

array_3d[a][b][c]=a+b+c;

for(a=0;a<3;a++)

{

printf(“\n”);

for(b=0;b<3;b++)

{

for(c=0;c<3;c++)

printf(“%3d”,array _d[a][b][c]);

printf(“\n”);

}

}

}

Output

0 1 2

1 2 3

2 3 4

1 2 3

2 3 4

3 4 5

2 3 4

3 4 5

4 5 6

- - - -

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

55

CHAPTER 08

CHARACTER ARRAYS AND STRINGS

 Introduction

A string is a sequence of characters that is treated as a single data

item. Any group of characters (except double quote sign) defined between

double quotation marks is a string constant.

Example

printf(“\” Well Done!”\”);

Output

“Well Done!”

 Declaration and Initialization of Strings

C does not support strings as a data type. however, it allows us to

represent strings as character arrays.

Syntax

char string_name[size];

Example

char city[10];

 Initialization of String variables

C permits a character array to be initialized in either of the

following two forms

Syntax

char string_name[size] = { list of values};

Example

char city[9]=”NEW YORK”;

Write a Program to Display the Output When the Account of Null

Character is not considered

#include<stdio.h>

#include<conio.h>

#include<string.>

void main()

{

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

56

char city[8]={„N‟,‟E‟,‟W‟, „Y‟, „O‟, „R‟, „K‟};

clrscr();

printf(“Name1=%s”, name1);

}

Output

NEW YORK

 String Handling Functions

C library supports a large number of string – handling functions that

can be used to carry out many of the string manipulations.

Function Action

Strcat()

Strcmp()

Strcpy()

Strlen()

Concatenates two strings

Compares two strings

Copies one string over another

Finds a length of a string

 strcat() function

The strcat function joins two strings together.

Syntax

strcat(string1,string2);

string1 and string2 are character arrays. When the function strcat is

executed, string2 is appended to string1.

 strcmp() function

The strcmp function compares two strings identified by the

arguments and has a value 0 if they are equal. if they are not , it has the

numeric difference between the first non - matching characters in the

strings.

Syntax

strcmp(string1, string2);

string1,string2 may be string variables or string constants.

Examples

strcmp(name1, name2);

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

57

strcmp(“ROM”, “RAM”);

8.4.3 strcpy() function

strcpy function works almost like a string-assignment operator.

Syntax

strcpy(string1,string2);

And assigns the contents of string2 to string1. string2 may be a

character array variable or a string constant.

Example

strcpy(city,”DELHI”);

strcpy(city1,city2);

Will assign the contents of the string variable city2 to the string

variable city1. The size of the array city1 should be large enough to receive

the contents of city2.

8.4.4. strlen() function

This function counts and returns the number of characters in a

string. It takes the form

Syntax

n=strlen(string);

where n is an integer variable, which receives the value of the

length of the string. The argument may be a string constant. The continuing

ends at the first null character.

Example

Write a program of a given string is palindrome or not

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<string.h>

void main()

{

char S1[50],S2[50];

int x;

clrscr();

printf("\n\t\t\t ******** PALINDROME ******** \n\n\n");

printf("\n\n\n\n\n Enter a string S1 \n\n\n\n\n");

scanf("%s",&S1);

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

58

strcpy(S2,S1);

x=strcmp(S2,strrev(S1));

if(x==0)

printf("\n\n\n\n\n %s \t is palindrome \n",S1);

else

printf("\n\n\n\n\n %s \t is not palindrome \n",S2);

getch();

}

Output:

*******************PALINDROME******************

Enter String S1:

madam

madam is a palindrome

sir

sir is not palindrome

- - - -

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

59

#include <stdio.h>

void main () {

int var1;

char var2[10];

printf("Address of var1 variable: %x\n", &var1);

printf("Address of var2 variable: %x\n", &var2);

}

CHAPTER 09

POINTERS

 Definition

A pointer is a memory variable that stores a memory address.

Pointer can have any name that is legal for other variable and it is declared

in the same fashion like other variables but it is always denoted by „*‟

operator.

 Accessing the address of the variable

Every variable is a memory location and every memory location

have its address defined which can be accessed using ampersand (&)

operator, which denotes an address in memory.

Consider the following example, which prints the address of the

variables defined −

When the above code is compiled and executed, it produces the following

result −

Address of var1 variable: bff5a400

Address of var2 variable: bff5a3f6

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

60

 Pointer Declaration

A pointer is a variable whose value is the address of another

variable, i.e., direct address of the memory location. Like any variable or

constant, you must declare a pointer before using it to store any variable

address. The general form of a pointer variable declaration is −

Syntax

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type

and var-name is the name of the pointer variable. The asterisk * used to

declare a pointer is the same asterisk used for multiplication. However, in

this statement the asterisk is being used to designate a variable as a pointer.

Take a look at some of the valid pointer declarations −

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer,

float, character, or otherwise, is the same, a long hexadecimal number that

represents a memory address. The only difference between pointers of

different data types is the data type of the variable or constant that the

pointer points to.

 Initialization of Pointer Variables

There are a few important operations, which we will do with the

help of pointers very frequently.

a) We define a pointer variable.

b) Assign the address of a variable to a pointer and

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

61

#include <stdio.h>

void main () {

int var = 20; /* actual variable declaration */

int *ip; /* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var);

/* address stored in pointer variable */

printf("Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */

printf("Value of *ip variable: %d\n", *ip);

}

Address 2 Address 1 value

c) Finally access the value at the address available in the pointer variable.

This is done by using unary operator * that returns the value of the

variable located at the address specified by its operand.

The following example makes use of these operations –

When the above code is compiled and executed, it produces the following

result −

Address of var variable: bffd8b3c

Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

 Chain of pointers

It is possible to make a pointer to point to another pointer, thus

creating a chain of pointers as shown

p2 p1 variable

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

62

Here, the pointer variable p2 contains the address of the pointer

variable p1, which points to the location that contains the desired value.

This is known as multiple indirections.

Example

int **p2;

This declaration tells the compiler that p2 is a pointer to a pointer of int

type.

 Pointer expression

Pointer variable can be used in expressions.

Example

Y=*p1 * *p2;

 Pointers and Arrays

Array name by itself an address or pointer. It points to the address

of the first element (0
th

 element of an array).

When an array is declared, the compiler allocates a base address and

sufficient amount of storage to contain all the elements of the array in

contiguous memory locations.

Example

Write a program to display elements of an array. Start element

counting from 1 instead of 0.

#include<stdio.h>

#include<conio.h>

void main()

{

int x[]={2,4,6,8,10}, k=1;

clrscr();

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

63

while(k<=5)

{

printf(“%3d”,k[x-1]);

k++;

}

}

Output

2 4 6 8 10

 Array of Pointers

C language also supports array of pointers. It is nothing but a

collection of addresses.

Example

Write a program to store addresses of different elements of an array using

array of pointers.

#include<stdio.h>

#include<conio.h>

void main()

{

int *ap[3];

int at[3]={5,10,15}k;

for(=0;k<3;k++)

ap[k]=at+k;

clrscr();

printf(“\n\t Address Element\n”);

for(k=0;k<3;k++)

{

printf(“\t%u”,ap[k]);

printf(“\t%7d\n”,*(ap[k]);

}

}

OUTPUT

Address Element

4060 5

4062 10
4064 15

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

64

 Pointers and Structures

The name of an array stands for the address of its zeroth element.

The same thing is true of the names of arrays of structure variable.

Example

struct inventory

{

char name[30];

int number;

float price;

}

product[2],*ptr;

This statement declares product as an array of two elements. The

pointer ptr will now point to product[0]. Its members can be accessed using

the following notation.

ptr name

ptr number

ptr price

The symbol is called the arrow operator(also known as member selection

operator)and is made up of a minus sign and a greater than sign.

 Pointers to Functions

A function, like a variable, has a type and an address location in the

memory. it is therefore, possible to declare a pointer to a function, which

can then be used as an argument in another function. A pointer to a function

is declared as follows:

Syntax

type(*fptr)();

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

65

This tells the compiler that fptr is a pointer to a function, which

returns type value. The parentheses around *fptr are necessary.

Syntax

type *gptr();

would declare gptr as a function returning a pointer to type.

Example

double mul(int, int);

double (*p1)();

p1=mul;

POINTER INCREMENTS AND

SCALE FACTOR

When we increment a pointer, its value is increased by the „length‟

of the data type that is points to. This length called the scale factor.

Example

P1++

We cause the pointer p1 to point to the next value of its type.

For example , if p1 is an integer pointer with an initial value , say

2800, then after the operation p1=p1+1, the value of p1 will be 2802 and

not 2801.

The number of bytes used to store various data types depends on the

system and can be found by making use of sizeof operator.

POINTERS AND ARRAYS

When an array is declared, the compiler allocates a base address and

sufficient amount of storage to contain all the elements of the array in

contiguous memory locations.

 NULL Pointers

It is always a good practice to assign a NULL value to a pointer

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

66

#include <stdio.h>

void main () {

int *ptr = NULL;

printf("The value of ptr is : %x\n", ptr);

}

variable in case you do not have an exact address to be assigned. This is

done at the time of variable declaration. A pointer that is assigned NULL is

called a null pointer.

The NULL pointer is a constant with a value of zero defined in

several standard libraries. Consider the following program

When the above code is compiled and executed, it produces the

following result −

The value of ptr is 0

In most of the operating systems, programs are not permitted to

access memory at address 0 because that memory is reserved by the

operating system. However, the memory address 0 has special significance;

it signals that the pointer is not intended to point to an accessible memory

location. But by convention, if a pointer contains the null (zero) value, it is

assumed to point to nothing.

To check for a null pointer, you can use an 'if' statement as follows −

if(ptr) /* succeeds if p is not null */

if(!ptr) /* succeeds if p is null */

- - - -

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

67

CHAPTER 10

FUNCTION

 Introduction

Function is a group of statements that together perform a task.

Every C program has at least one function, which is main(), and all the

most trivial programs can define additional functions.

You can divide up your code into separate functions. How you

divide up your code among different functions is up to you, but logically

the division is such that each function performs a specific task.

A function declaration tells the compiler about a function's name,

return type, and parameters. A function definition provides the actual body

of the function.

The C standard library provides numerous built-in functions that

your program can call. For example, strcat() to concatenate two

strings, memcpy() to copy one memory location to another location, and

many more functions.

A function can also be referred as a method or a sub-routine or a

procedure, etc.

 Defining a Function

A function is a self – contained block or a sub – program of one

or more statements that performs a special task when called.

The general form of a function definition in C programming

language is as follows –

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

68

return_type function_name(parameter list) {

body of the function

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

/* local variable declaration */

int result;

Syntax

A function definition in C programming consists of a function

header and a function body. Here are all the parts of a function −

 Return Type − A function may return a value. The return_type is

the data type of the value the function returns. Some functions

perform the desired operations without returning a value. In this

case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The

function name and the parameter list together constitute the function

signature.

 Parameters − A parameter is like a placeholder. When a function is

invoked, you pass a value to the parameter. This value is referred to

as actual parameter or argument. The parameter list refers to the

type, order, and number of the parameters of a function. Parameters

are optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of

statements that define what the function does.

Example

Given below is the source code for a function called max(). This

function takes two parameters num1 and num2 and returns the maximum

value between the two −

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

69

 Function Declarations

A function declaration tells the compiler about a function name

and how to call the function. The actual body of the function can be defined

separately. A function declaration is also known as function prototype

A function declaration has the following parts –

Syntax

return_type function_name(parameter list);

For the above defined function max(), the function declaration is as

follows −

int max(int num1, int num2);

Parameter names are not important in function declaration only their

type is required, so the following is also a valid declaration −

int max(int, int);

Function declaration is required when you define a function in one

source file and you call that function in another file. In such case, you

should declare the function at the top of the file calling the function.

 Return values and their types

A function may or may not send back any value to the calling

function. If it does, it is done through the return statement. When it is

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

70

possible to pass to the called function any number of values, the called

function can only return on value per call, at the most.

Syntax

return;

or

return(expression);

Example

int mul(int x, int y)

{

int p;

p=x*y;

return(p);

}

returns the value of p which is the product of the values of x and y.

 Function Calls

A function can be called by simply using the function name

followed by a list of actual parameters (or arguments), if any, enclosed in

parentheses.

Example

main()

{

int y;

y= mul(10,5); /* function call*/

printf(“%d\n”,y);

}

When the compiler encounters a function call, the control is

transferred to the function mul(). This function is then executed line by line

as described and a valueis returned when a return statement is encountered.

This value is assigned to y.

 Recursion

A function is called repetitively by itself. The recursion can be used

directly or indirectly.

 The direct recursion function calls itself till the condition is true

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

71

 In indirect recursion a function calls another function then the called

function calls the calling function

Example

Write a program to call main() function recursively and perform

sum of 1 to 5 numbers.

#include<stdio.h>

#include<conio.h>

int x,s;

void main(int);

void main(x)

{

s=s+x;

printf(“\n x=x%d s=%d”,x,s);

if(x==5)

exit(0);

main(++x);

}

OUTPUT

x=1 s=1

x=2 s=3

x=3 s=6

x=4 s=10

x=5 s=15

 Categories of Function

A function, depending on whether arguments are present or not and

whether a value is returned or not, ma belong to one of the following

categories.

Category 1: Functions with no arguments and no return values

Category 2: Functions with arguments but no return values

Category 3: Functions with arguments and one return value

Category 4: Functions with no arguments but return a value

Category 5: Functions that return multiple values.

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

72

No input

function 2()

 {

}

function 1()

 {

function 2()

}

 No Arguments and no Return values

When a function has no arguments, it does not receive any data

from the calling function. Similarly, when it does not return a value, the

calling function does not receive any data from the called function. In

effect, there is no data transfer between the calling function and the called

function.

No output

Figure 10.7.1 No data communication between functions

#include<stdio.h>

void introduction()

{

printf(“Hi\n”);

}

int main()

{

introduction();

return 0;

}

Output

Hi

 Arguments but no Return values

 The main function has no control over the way the functions receive

input data.

 The nature of data communication between the calling function and

the called function with arguments but no return value.

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

73

function 2(f)

 {

}

function 1()

 {

function 2(a)

}

 No return value

Figure 10.7. 2. one-way data communication

#include<stdio.h>

int sum(int a,int b)

{

 int c=a+b;

}

void main()

{

int var1=10,var2=20;

int var3=sum(var1,var2);

printf(“%d”,var3);

}

Values of

arguments

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

74

Values of

arguments

function 2(f)

 {

return(e)

}

function 1()

 {

function 2(a)

}

The arguments ch, p, r and n are called the formal arguments. The

calling function values to these arguments using function calls containing

appropriate arguments.

 Arguments with Return values

It receives data from the calling function through arguments, but

does not send back a value. A self-contained and independent function

should behave like a „black box‟ that receives a predefined form of inputs

and outputs a desired value. Such functions will have to – way data

communication. The use of to – ay data communication between the calling

and the called functions.

Function result

Figure 10.7.3. two-way data communication

Example

#include<stdio.h>

int sum(int a,int b)

{

 int c=a+b;

return c;

}

int main()

{

int var1=10,var2=20;

int var3=sum(var1,var2);

printf(“%d”,var3);

return 0;

}

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

75

No arguments

return value

 No Arguments but Return a value

It may not take any arguments but returns a value to the calling

function.

Figure 10.7.4. one-way data communication

Example

int get_number(void);

main()

{

int m= get_number();

printf(“%d”,m);

}

int get_number(void)

{

int number;

scanf(“%d”,&number);

return(number);

}

 Functions that Return Multiple values

We have functions that return just one value using a return

statement. We can also force the function to return more values per call. It

is possible to call by the reference method.

The mechanism of sending back information through arguments

through arguments is achieved using what are known as the address

operator(&) and indirection operator(*).

Example

Write a program to pass arguments to user- defined function by value and

reference.

function 2()

 {

return(e)

}

function 1()

 {

function 2()

}

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

76

#include<stdio.h>

#include<conio.h>

main()

{

int k,m,other(int,int*);

clrscr();

printf(“\n Address of k & m in main(): %u%u”, &k,&m);

other(k,&m);

return0;

}

other(intk,int *m)

{

printf(“\n Address of k & m in other(): %u%u”,&k,&m);

}

OUTPUT

Address of k & m in main() : 65524 65522

Address of k & m in other() : 65518 65522

 Calling a Function

While creating a C function, you give a definition of what the

function has to do. To use a function, you will have to call that function to

perform the defined task.

When a program calls a function, the program control is transferred

to the called function. A called function performs a defined task and when

its return statement is executed or when its function-ending closing brace is

reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters

along with the function name, and if the function returns a value, then you

can store the returned value.

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

77

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main () {

/* local variable definition */

int a = 100;

int b = 200;

int ret;

/* calling a function to get max value */

ret = max(a, b);

printf("Max value is : %d\n", ret);

return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

For example −

We have kept max() along with main() and compiled the source code.

While running the final executable, it would produce the following result −

Max value is : 200

- - - -

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

78

struct [structure tag] {

member definition;

member definition;

...

member definition;

} [one or more structure variables];

CHAPTER 11

STRUCTURE

 Introduction

Arrays allow to define type of variables that can hold several data

items of the same kind. Similarly, structure is another user defined data

type available in C that allows to combine data items of different kinds.

Structures are used to represent a record. Suppose you want to keep

track of your books in a library. You might want to track the following

attributes about each book −

 Title

 Author

 Subject

 Book ID

 Defining a Structure

To define a structure, you must use the struct statement. The struct

statement defines a new data type, with more than one member. The format

of the struct statement is as follows.

Syntax

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

79

struct Books {

char title[50];

char author[50];

char subject[100];

int book_id;

} book;

/* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

/* Declare Book1 of type Book */

/* Declare Book2 of type Book */

#include <stdio.h>

#include <string.h>

struct Books {

char title[50];

char author[50];

char subject[100];

int book_id;

};

int main() {

struct Books Book1;

struct Books Book2;

The structure tag is optional and each member definition is a

normal variable definition, such as int i; or float f; or any other valid

variable definition. At the end of the structure's definition, before the final

semicolon, you can specify one or more structure variables but it is

optional. Here is the way you would declare the Book structure −

11.3 Accessing Structure Members

To access any member of a structure, we use the member access

operator (.). The member access operator is coded as a period between the

structure variable name and the structure member that we wish to access.

You would use the keyword struct to define variables of structure type.

The following example shows how to use a structure in a program −

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

80

When the above code is compiled and executed, it produces the following

result −

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

 Structures as Function Arguments

We can pass a structure as a function argument in the same way as

you pass any other variable or pointer.

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info */

printf("Book 1 title : %s\n", Book1.title);

printf("Book 1 author : %s\n", Book1.author);

printf("Book 1 subject : %s\n", Book1.subject);

printf("Book 1 book_id : %d\n", Book1.book_id);

/* print Book2 info */

printf("Book 2 title : %s\n", Book2.title);

printf("Book 2 author : %s\n", Book2.author);

printf("Book 2 subject : %s\n", Book2.subject);

printf("Book 2 book_id : %d\n", Book2.book_id);

return 0;

}

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

81

/* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info */

printBook(Book1);

/* Print Book2 info */

printBook(Book2);

return 0;

}

void printBook(struct Books book) {

printf("Book title : %s\n", book.title);

printf("Book author : %s\n", book.author);

printf("Book subject : %s\n", book.subject);

printf("Book book_id : %d\n", book.book_id);

}

/* Declare Book1 of type Book */

/* Declare Book2 of type Book */
struct Books Book1;

struct Books Book2;

#include <stdio.h>

#include <string.h>

struct Books {

char title[50];

char author[50];

char subject[100];

int book_id;

};

/* function declaration */

void printBook(struct Books book);

int main() {

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

82

struct_pointer = &Book1;

struct_pointer->title;

#include <stdio.h>

#include <string.h>

struct Books {

char title[50];

char author[50];

char subject[100];

int book_id;

When the above code is compiled and executed, it produces the following

result −

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

 Pointers to Structures

We can define pointers to structures in the same way as you define

pointer to any other variable −

struct Books *struct_pointer;

Now, we can store the address of a structure variable in the above

defined pointer variable. To find the address of a structure variable, place

the '&'; operator before the structure's name as follows −

To access the members of a structure using a pointer to that structure, we

must use the → operator as follows −

Let us re-write the above example using structure pointer.

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

83

When the above code is compiled and executed, it produces the following

result −

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

/* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info by passing address of Book1 */

printBook(&Book1);

/* print Book2 info by passing address of Book2 */

printBook(&Book2);

return 0;

}

void printBook(struct Books *book) {

printf("Book title : %s\n", book->title);

printf("Book author : %s\n", book->author);

printf("Book subject : %s\n", book->subject);

printf("Book book_id : %d\n", book->book_id);

}

/* Declare Book1 of type Book */

/* Declare Book2 of type Book */
struct Books Book1;

struct Books Book2;

};

/* function declaration */

void printBook(struct Books *book);

int main() {

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

84

struct packed_struct {

unsigned int f1:1;

unsigned int f2:1;

unsigned int f3:1;

unsigned int f4:1;

unsigned int type:4;

unsigned int my_int:9;

} pack;

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

 Bit Fields

Bit Fields allow the packing of data in a structure. This is especially

useful when memory or data storage is at a premium. Typical examples

include −

 Packing several objects into a machine word. e.g. 1 bit flags can be

compacted.

 Reading external file formats -- non-standard file formats could be

read in, e.g., 9-bit integers.

C allows us to do this in a structure definition by putting: bit length

after the variable. For example −

Here, the packed_struct contains 6 members: Four 1 bit flags f1..f3, a 4-bit

type and a 9-bit my_int.

C automatically packs the above bit fields as compactly as possible,

provided that the maximum length of the field is less than or equal to the

integer word length of the computer. If this is not the case, then some

compilers may allow memory overlap for the fields while others would

store the next field in the next word.

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

85

 Unions

Unions are a concept borrowed from structures and therefore

follow the same syntax as structures. a union can be declared using the

keyword union as follows.

union item

{

}

code;

int m;

float x;

char c;

This declares the variable code of type union item. The union

contains three members, each with a different data type. However, we can

use only one of them at a time. This is due to the fact that only one location

is allocated for a union variable, irrespective of its size.

- - - -

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

86

CHAPTER 12

FILES

 Introduction

A file represents a sequence of bytes, regardless of it being a text

file or a binary file. C programming language provides access on high level

functions as well as low level (OS level) calls to handle file on your storage

devices. This chapter will take you through the important calls for file

management.

 Opening Files

We can use the fopen() function to create a new file or to open an

existing file. This call will initialize an object of the type FILE, which

contains all the information necessary to control the stream. The prototype

of this function call is as follows.

Syntax

FILE *fopen(const char * filename, const char * mode);

Here, filename is a string literal, which you will use to name your file, and

access mode can have one of the following values −

Sr.No. Mode & Description

1 r
Opens an existing text file for reading purpose.

2 w

Opens a text file for writing. If it does not exist, then a new file is

created. Here your program will start writing content from the

beginning of the file.

3 a

Opens a text file for writing in appending mode. If it does not

exist, then a new file is created. Here your program will start

appending content in the existing file content.

4 r+
Opens a text file for both reading and writing.

5 w+

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

87

Sr.No. Mode & Description

 Opens a text file for both reading and writing. It first truncates the

file to zero length if it exists, otherwise creates a file if it does not
exist.

6 a+

Opens a text file for both reading and writing. It creates the file if

it does not exist. The reading will start from the beginning but

writing can only be appended.

If you are going to handle binary files, then you will use following access

modes instead of the above mentioned ones −

"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"

 Closing a File

To close a file, use the fclose() function. The prototype of this

function is −

Syntax

int fclose(FILE *fp);

The fclose() function returns zero on success, or EOF if there is an

error in closing the file. This function actually flushes any data still pending

in the buffer to the file, closes the file, and releases any memory used for

the file. The EOF is a constant defined in the header file stdio.h.

There are various functions provided by C standard library to read and

write a file, character by character, or in the form of a fixed length string.

12.4 Writing a File

Following is the simplest function to write individual characters to a

stream −

Syntax

int fputc(int c, FILE *fp);

The function fputc() writes the character value of the argument c to

the output stream referenced by fp. It returns the written character written

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

88

#include <stdio.h>

main() {

FILE *fp;

fp = fopen("/tmp/test.txt", "w+");

fprintf(fp, "This is testing for fprintf...\n");

fputs("This is testing for fputs...\n", fp);

fclose(fp);

}

on success otherwise EOF if there is an error. We can use the following

functions to write a null-terminated string to a stream −

int fputs(const char *s, FILE *fp);

The function fputs() writes the string s to the output stream

referenced by fp. It returns a non-negative value on success,

otherwise EOF is returned in case of any error. You can use int

fprintf(FILE *fp,const char *format, ...) function as well to write a string

into a file. Try the following example.

Make sure you have /tmp directory available. If it is not, then

before proceeding, you must create this directory on your machine.

When the above code is compiled and executed, it creates a new

file test.txt in /tmp directory and writes two lines using two different

functions. Let us read this file in the next section.

12.5. Reading a File

The fgetc() function reads a character from the input file referenced

by fp.Given below is the simplest function to read a single character from a

file −

Syntax

int fgetc(FILE * fp);

The fgetc() function reads a character from the input file referenced

by fp. The return value is the character read, or in case of any error, it

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

89

#include <stdio.h>

main() {

FILE *fp;

char buff[255];

fp = fopen("/tmp/test.txt", "r");

fscanf(fp, "%s", buff);

printf("1 : %s\n", buff);

fgets(buff, 255, (FILE*)fp);

printf("2: %s\n", buff);

fgets(buff, 255, (FILE*)fp);

printf("3: %s\n", buff);

fclose(fp);

}

returns EOF. The following function allows to read a string from a stream

−

char *fgets(char *buf, int n, FILE *fp);

The functions fgets() reads up to n-1 characters from the input

stream referenced by fp. It copies the read string into the buffer buf,

appending a null character to terminate the string.

If this function encounters a newline character '\n' or the end of the

file EOF before they have read the maximum number of characters, then it

returns only the characters read up to that point including the new line

character. You can also use int fscanf(FILE *fp, const char *format,

...) function to read strings from a file, but it stops reading after

encountering the first space character.

When the above code is compiled and executed, it reads the file created in

the previous section and produces the following result −

1 : This

2: is testing for fprintf...

3: This is testing for fputs...

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

90

size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements,

FILE *a_file);

size_t fwrite(const void *ptr, size_t size_of_elements, size_t

number_of_elements, FILE *a_file);

Let's see a little more in detail about what happened here.

First, fscanf() read just This because after that, it encountered a space,

second call is for fgets() which reads the remaining line till it encountered

end of line. Finally, the last call fgets() reads the second line completely.

12.6 Binary I/O Functions

There are two functions, that can be used for binary input and

output −

Both of these functions should be used to read or write blocks of memories

- usually arrays or structures.

References

 Programming with ANSI and Turbo C – Ashok N.Kamthane.

 Programming in ANSI C – E. Balagurusamy, Sixth Edtion.

 www. Tutorialpoint.com

- - - -

http://www/

91

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

ROUGH WORK

92

Dr. M.Sivasankari – Take C Easy, Quick – Reference Guide

ROUGH WORK

